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Preface

This report describes 2fforts completed in the Language Stud-

ies project at Syracuse University under RADC contract F30602-77-

C~0235. The work covers the period October 1, 1977 through Sep-

tember 30, 1980.

The report is produced in five volumes to facilitacte single
volume distribution.
Volume 1. Report from the Very High Level Programming Systems

task. Report title is "Logic Programming in Lisp".
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Volume 2. Report from the Systems Studies task. Report title

is "Multiple Finite Queueing Model with Fixed Prior-
ity Scheduling".

Volume 3. Report from the Systems Studies task. Report title
is "An Algorithmic Solution for a Queueing Model of

a Computer System with Interactive and Batch Jobs.

LR

Volume 4. Report from the Grammars of Programming task. Re- B

1 port title is “Programming Control Structures in a

High Level Language.

Volume 5. Report from the Proving Program Correctness task.

Report title is "Realignment".
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AN ALGORITHMIC SOLUTION FOR A QUEUEING MODEL OF A

COMPUTER SYSTEM WITH INTERACTIVE AND BATCH JOBS

ABSTRACT

A queueing model with two customer classes, one with infinite
and the other with finite source, is used as a model for a computer
system with interactive and batch jobs. Using an imbedded Markov
Chain representation of this queueing system, and an algorithmic ap-
proach, the steady state joint probability distribution of the number
of interactive and batch jobs at a job service completion epock is
derived. Server utilization, mean waiting times, joint probability
distribution, and mean number of interactive and batch jobs at an
arbitrary time epoch are derived using these probabilities, discrete

state level crossing analysis and Little's result.

Key Words: Computar Systems Modelling, Priority Queues, Imbedded
Markov Chain, Algorithmic Solution, Level Crossing
Analysis,

iv




1. INTRODUCTION

The intent of this paper is to present an algorithmic solution
for a queueing model of a computer system with ;nteractive and batch
jobs. Interactive jobs arrive frcm a finite number of interactive
terminals and batch jobs arrive from an infinite size population.
Once an interactive job arrives to the computer system, the corres-—
ponding terminal stays passive until the job is processed, at which
time thekterminal becomes active and begins the process of submitting

a new job.

The queueing models associated with this system are special cases
of priority queues with two classes of customers with one finite and
the other infinite sources. Models in which the finite scurce jobs
having preemptive priority over infinite source jobs have been exten-
sively analyzed by Avi-Ttzhak and Naor [1], Colard and Latouche [2],
Jais@al [4], Jaiswal and Thiruvengadam [5], and Thiruvengadam [12].
While the technique used in [1, 4, 5, 121 is complex and obtaining
numerical results is difficult, the algorithmic approach discussed
by Colard and Latouche [2] is very efficient. This efficiency comes
from the fact that the above model can be tteated'as a special case
of an M/PH/1 queue. Simple explicit results for this M/PH/1 queue
can be found in Neuts [10].

In this paper, however, we shall assume that the priority disci-
pline is non-preemptive. So we shall model the computer system by a

queueing system with two classe: of customers and non-preemptive pri-

1
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ority service discipline. Using an imbedded Markov chain repre=en-
tation of this queueing system and an algorithmic approach discussed
by Lucantoni and Neuts [8] and Neuts (9], the steady state joint

probability distribution of the number of interactive and batch jobs
at a job service completion epoch is derived. Server utilization,
mean waiting times, joint probability distribution and mean number

of interactive and batch jobs at an arbitrary time epoch are derived

using these probabilities, discrete state level crossing analysis [11],

and Little's result [6].

2. THE MODEL

The model class considered here is of a single server queueing
system to which the arrivals form two independent arrival streams,
one from a finite and the other from an infinite population source.
The time needed by each of the M members in the finite source, to
submit a job (hereafter called interactive job) is exponential with
mean l/Al. The jobs from the infinite soutrce (hereaffer calied batch
jobs) arrive to the server according to a Poisson process with rate
AO. The service requirements of these jobs at the server are general
with probability distribution funetion Bo(~) for batch and Bl(‘) for
interactive jobs with means l/u0 and l/ul, respectively. The service

discipline is non-preemptive priority. In this paper we consider

two cases, one in which the interactive jobs have higher priority

over the batch jobs and the other in which these priorities are re-

versed.
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1t is routinely verified that the number of interactive and

batch jobs just after a service completion, in this model, forms a

Markov chain. Let {(i1,3), 1>0, M>3>0} represent the state space

with i representing thz number of batch and j representing the num-

ber of inreractive jobs. The transition probability matrix (TPM) P,

of this Msckov chain is of the form:

Bo Bl Bz B3 Ba L] L] -
Ao Al Az A3 A4 e o e
0 Ao Al A2 A3 o e s
0 0 AO Al A2 « e
0 0 0 A.0 A1 s e .
0 0 0 0 Ao . e e
P = 0 0 0 0 0
( % L) . . L] L] . . .
% t:; L[] * - L] * L * L)

where the matrices Ar, r>0 and Br’ r>0 are all square substochastic

matrices of order M+l. The matrices
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are both stochastic.
Let Ar(i,j) and Br(i,j), i=0,1,2,...,M; j = 0,1,2,...,1, be
the (i+1,j+1)th erntry of the Ar and Br matrices, respectively. Then

if é(n) is the state of the Markov chain at the a-th transition,

[
i

A_(14,3) = PR = (br-1,)]X(0) = (1)}, k> 0

and

il
1

B (1,1) = P{X(ntl) = (r,1)[X(n) = (0,1)}

for all i,j = 0,1,2,...,M and n>0. The exact values of these entries
will depend on AO’ Al’ BO(-), B1(°), and the priority assignment. Be-
fore discussing these entries any further, we will first outline the
algorithmic approach used to analyze the Markov chain with the stiuc-
ture of P for the TPM. This approach, as a general methodology, was
introduced by Lucantoai and Neuts [8] aﬁd Neuts [9]. 1In this section,
however, we will present the necessary results only.

Let X be the steady state probability vector with the partion
x= (50, ﬁl"") where & i>0 are all (M+l)-vectors. These steady

state probabilities are the solution to the set of equations,

X080 * X180 = X0
(1)
kil

R .

with the normalizing condition
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3
£
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where g™ (1,1,...)"' is of appropriate dimension. Next we present
the coudition for the existence of a steady state solution. Assum-

ing that the matrix A is irreducible, let f be the solution to
Rhgongl @

and & be given by

-]

= Ir Ar% . (3)

8
A r=l

Then for stationarity (see Neuts [9}),

psg\rlg<l . 4)

If this condition is satisfied, the steady state joint probability

distribution for this Markov chain is given by (see [8]),

X

0 = 4. d*
S (5)
k

K

=

X1

ol

J

vhere these quantities {, k, g*, and k* are defined in the appendix.
The other elements of the steady state probability vector are obtained

using the iterative equations




%0 = %"

(6)
k-1

= 4 ' '
B = Rt P DA e R (8

where
-1l
' = —
Ry = GeoBy * X&) (T-AD)
and

. !
A'_= A (1A, 20,

These iterations of kk(n) are continued until a sufficient accuracy

is achieved for X The marginal probabilities are

X, = X8 0 i>0
and ¢))

\-‘m‘ % ; ¢ “l

for batch and in:eractive jobs, respectively.

It can be shiown that (see equation (40) of [8])

X =KD = lgy T B AT + (Ige)f (8)
r=1 v

w0

where §(Z) = I &rzr and N1 is an (M+1l)x(M+1) matrix with identical
=]
columns equal to 1.

The first moment of the stationary distribution is
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(1) = (~X()[I- 2 rA ] +x, &
¥ =1 T %o r=]
(9)-

+ % rilznr - KA st 4 &P wer,

B
r

where x(l) and {1 are as ¢ *fined in (8) and é(l)(l)g is defined in the
appendix.

Next, using these results and the discrete state level crossing

analysis [11], we will derive the steady state joint and marginal

Sk

G

probability distributions at an arbitrary time epoch.

3
4 Let'% be the steady state joint probability vector at an arbitrary %
- s
= time epoch. Here g = ( ...) and g, = (q. ces . Then, z
i po $ = Qotyr 1 (@ryedgyeceesdyy
% the rate of upcrossings from the compound state {(i,j), i<m, j<n} is %
e g
1 (see [11]), 5
k| A, I +aA, Iq,, (10)
4 0 j.oqmj 1 oHn

3

since the arrivals are Markovian. Now let xrij be the steady state

probability that a type r (r=0 for batch and r=1 for interactive job)

VR

departing job sees 1 batch and j interactive jobs in the system.

{

P

Then the rate of downcrossings into the compound state {(i,3), i<m,

j<n} 1is (see [11]),

ety

=
z*

. a

= Pk L x . +pu. I x, , (11)
00j_o mj 1;1-0 in

,§ wheze pi is the fraction of time the server is busy with type i jobs.
2 Now equating the rates of up- and downcrossings, from (10) and (11)

=
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we get

n m n 0 m 1
A Zq.+tmnr, Zq, =p.u, IX + pyu, L x .
0 jgoqu 1otn ~ P00 2% mg TP 5% aa

Rearranging terms, we get a recursive formula for the unknowns

Ln® It is
i 1 0 1 n 0
U = Ao+nxl{°o“ox on T P1M1¥ g t jﬁo("o"ox nj = *0%mj’
{12)
m-1
1
+ i—E-O (plulx in " nquin) » 0<n<M, w0

Next we derive the marginal pr..-z::.ilities associated at an arbitrary

time epoch.

o L T R
A)ﬁ.w .‘pl)lullim"ﬂ!lul A A i d

9
5 (1) Interactive Jobs
%
N Equating the rates of up~ and downcrossings (see page 21 of [11]),
‘.
3 wve get
;
ni q1 = p.u x1 0<n<M (13)
1% n 1"1" n®* "=
1 > 1,
where X n zx in and q P the steady state probability that there
i=0
: are n interactive jobs in the system at an arbitrary time epoch. Then
=
PyH
= q1 =31 x1 » O<n<M
= n nxl n -~
= and (14)
i M-1
E 1 1
% Ty=1- 2 ay

bl
P
T
o




(i1) Batch Jobs

Using a similar derivation as above (see [11]), we get

0 . 0
Aol @ ™ PodoX o ° (15)
o Yo 0
where x = I x 3 and q o is the steady state probability that there
3=0

are m batch jobs in the system at an arbitrary time epoch. Since all
batch jobs are serviced, PoHo = Ao. Substituting this in (15), we

have
q =x m>0 (16)
m*® =

The following section provides equations to evaluate the mean number
of jobs in the system at an arbitrary time epoch, and the mean wait-

ing times.

(1) Interactive Jobs

1

Let the effective interactive job arrival rate be A e’ Then

Ale = PyHy- If L1 is the mean number of interactive jobs at the

server at an arbitrary time epoch, and Wl is 1ts mean waiting time,

1
A e "™ (MrLl)Al
or

Now from (17) and Little's result [6],

i
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W, = (M/Plul) -/ . (18)

(11) Batch Jobs
Let LO and NO be the mean number of batch jobs in the system at
an arbitrary time epoch and just'after a batch jobs service comple~-

tion, and wo its mean waiting time. Then

o=, (19)
since qom = xom, and from Little's result,

W, =L (20)

0 = Lo/A
To use (12), (14), (16)-(19), and (20), we need x‘ij, pps T = 0,1,
and No. These can be related to x and g(l)(l) depending on the
priority rule used. We shall derive these relationships later for
each case, separately. The following definitions will be used in

both cases.

%(n,r:k) = P{n batch jobs and r iateractive jobs arrive during a
time interval which has a probability distribution
Bi('), given there are k interactive jobs left in the

source at the beginning of this time interval}.




CASE 1: Interactive Jobs Have Higher Priority Over Batch Jobs

Here we assume that the interactive jobs have higher priority
over batch jobs. That is, if there is at least one interactive job

available at a service completion epoch, it will go in for service.

Then the entries of the matrix Ar are given by,

Pl(t-l,j+1—i:M-1} M>1>0; M>§>i-1

for r>1
Ar(i,j) - 0
Po(r,jm)
and for r=0
0
Ao(itj) =
P (0,3:M)

Similarly, for r>0

11

M>1>0; 1-1>3>0

i=0; M>320

M>i>0; M>3>0

i=0; M>3>0




i

R MO R, i

( A, (1,1) M>1>0; M>3>0

Br(i,j) = i aoPo(r,j:M)+alPl(r,j:M-l) » 1=0:M-1>4>0

\ aoPo(r,M:M) =0; j=M ,
AO Mll
where a, = and a, = ——/ . (21)
0 A0+Mll 1 X0+MA1

These probabilities can be evaluated in a recursive manner and the

details are given in the appendix. Now to use equations (12), (14),

(16)~(19), and (20), we need MO’ %l, Pgs Py» and NO. We will derive
these next.

Since for an interactive job to leave behind i batch and n Inter-
active jobs, an interactive job must go in for service, thus the use

of conditional probability and convolution arguments lead to

1 i nHl n+l
Xy, = {: E xiji+1_k(j,n) + I ijBi‘j’n) + alxooBi(O,n)}/p1 (22)
k=1 j=1 j=1
and
1 >
*a " L (23)

where Py is the probability that a departing job is interactive. Now
for batch jobs,

12
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m+l

0

where pc is the probability that a departing job is a batch job.

Then

=0 ™

p ml M M
= ;6 {iilxio jzo - j_(0 3) + agxy, j,):‘.Olam(O,:!)} .

After some simplification, and using the normalizing condition, we get

0 m+l
x = {iillxioP(n&I-i) + aoxooP(m)}/po , (25a)

where P(n) is the probability thz* n batch jobs arrive during the
service of a batch job, and

= Ix (25b)

+ a.x .
g 10 T %000

Po

Using the theory of Markov Renewal Processes (see J.J. Hunter 3D,

it can be shown that

po = (I Xy ) /EC .
0 ) 10 ¥ 2%00
where
® > “ 1 *00
EC= (Ix ) + (¢t )--4--———-——
1ol 10 * 30%00 Yo 120 j-l 1j pl Ao HD
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and

L 00 e B 0L B

o M 1 %
p, = (L I x,, +a,x.,)——/EC, Z
17 Yyep ga 43 T P2%00%y

«©

since ECxEN is the mean busy cycle time and ( I X0 + aoxoo)xEN/u0 and

« M i=]1
(Z Ix,, +a,x..)xEN/u, are the mean time in a busy cycle the server
1m0 gu1 M~ 1700 1

is busy with batch and interactive jobs, respectively, where EN is the

mean number of jobs served during a busy cycle. Note that

- L xX,n=9Y, - X
§ 1=1 10 0 0G
% and
Z © M
I Ix,,=1l-y
im0 j=1 13 0
and so from {25b)
Po = Yo = %go * 3g%gp - (25¢)
Next we evaluate No. Since
No = Im x0

m=0

from (25a) we get

14




0o ° mtl
N =t mf xioP(m+l-i) + xooaoP(m)}/po
m=0 i=]
= {z I mx,,P(m-(i-1)) + x,.a,. I m P(m)}/p
i=] pei-1 10 0070 1w 0
={Zdix.,- (1-p,)CZ x.,) + ax..0.}/p
ey 10 070 o 10" T %a¥00%0™ Po
= [ - (- -
'O - A-ry) (ygxgg) + agxgPal/py -
So
1= @ - Q-0 ) (y=x.0) + a x,00} (26)
o~ X o’ Y0 00 0*00°0’/Po
é and hence WO = LG/A0 can be obtained once we evaluate X. We can use

(5) and (6) to obtain this provided A is irreducible and inequality
(4) holds. From the definition of Ar, it is easily verified that the

(1+1,3+1) the entry A(i,j) of A is given by

(o, M-i ’Alc)jﬂ-ie’m'j"lnlt

of (j+1—i)(l-e dBi(t). m>1>0, m>j>i-1

. ~A b, —(M-§)At
A, 1) J o Pase THle LaB(e) , 1=0; 12450

L 0 Otherwise
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Similarly, g is given by
é = (AO/NO’)\O/UI,)‘Glulo '”’AO/ul)

Then the necessary and sufficient condition for the existance of X is

p=m<1’

where

e

CASE 2: Batch Jobs Have Higher Priority Over Interactive Jobs

In this section we assume that the batch jobs have higher pri-
ority over interactive jobs. That is, if there is at least one batch
job available at a service completion epoch, it will go in for ser-

vice. From the definition of Pi(n,r:k) it is easily verified that,

R —

for r>0

Po(r,j-i:M-i) » M>1>0; M>3>1

M>1>0; 1>3j>0
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and NO.

and

rPl(r,j+1-i:u—i)

M>1>0; M>3>i-1

aOPO(r,j:M) + a‘Pl(r,j:M-l) s

i=0;4-1>3>0
B_(1,1) =J}
aoPo(r,M:M) i=0; j=M
k0 otherwise

As indicated in the previous case, these probabilities can be evalu-

ated recursively. Now we will derive expressions for po,pl, EO, X

Similar to the previous case, using Markov Renewzl Theory, we

get
po = ( ; (xm) + aoxoo)'—]_./Ec b4
m=1 Yo
where
M - @ X
1 1 00
EC= (Z x., +a,x..0~—+ (I (x) + ax,q)—+ T
=1 0j 1700 ¥y el D 0700 Ho A0+Rll
and
M 1
p. = (I x.. +a,x,.)~—/EC.
1 j=1 0j 1700 My
@ M
Note that I (x ) =1~ x, and I X.,, = X, = X.ne.
mel D@ 0 =1 0j 0 00

17
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The relationships for ac'o and ﬁl with respect to P is presented next.

These results follow from simple convolution arguments and condition-

al probabilities.

0 ml j
X = { I I x, p,(ml-i, j-k:M-k)
nj {=1 k=0 ik*0 g

+ xooaoPo(m,j M) }/po s

where Py is the probability that a departing job is . batch job,

and so

o Yo
xm- mej
3=0
mHl

= iiilxiP(uﬁl-i) + xooaoP(m)}/pO ,

where Py = 1- Xy + a0Xgp* Therefore

-]
No- meo
m

m=0

o mtl

o«
=~ {ZmZx Pmtl-i) + I agx,mP(m)}/p,
m=0 i=] =0

-~ [

= {z I mx, P(m-(i~-1)) + a x..p~}/P
to] mei-1 0000’/ Po

00

= {ifl(i-lﬁno)xi + agxg0e0}/pg

So

18




R =

= (¥ - (1- -
Ly = {X7 (g - (-py) (1-xy) + 35%06°0} P (28)
and Wo = LO/AO can be ohtained once x is known.
Now for xlin we have from convolution arguments,
1 n+l
= { —_t M i * Mee 1
X n {jilxojla(l,n+l JiM=j) + aleOPl(i,n.M 1)../pl , (29)

where Py is the probability that a departing job is interactive and
» M>n>0 . (30)
Now we will specify the condition for the existence of X Con-

sidering A, it is clear that A is an upper triangular matrix whose

entries, with notation as defined in the previous case, are

[ oMoty ,, TME geg TR (D .
ol (j_i)(l—e )j e dB, (), M21>0; M>j>1
l
A(i,3) =4
0 otherwise
\

Clearly A is reducible and therefore the condition (4) cannot be
directly used. However, using an analysis similar to that of
Lucantoni {7] page 7, it can be established that the necessary

and sufficient condition for stability is

Ao/u0 <1.
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3. NUMERICAL RESULTS

The algorithm generating these performance measures was imple-

mented in APL.

Ao, Al, Hogs Ups and M for exponential service times are shown in

Takles 1 and 2.

Some sample results for different input parameters

Mean number of jobs in the system at an arbitrary
time epoch when higher priority is given to

Batch Jobs Interactive Jobs Batch Jobs

Arrival
Rate AO Batch Interactive Batch Interactive
.05 0.2835 0.5875 0.2567 0.6841
.075 0.5133 0.7376 0.4394 0.9565
.10 0.8569 0.8878 0.6821 1.2890
<125 1.4190 1.0380 1.0210 1.6920
.15 2.4879 1.1881 1.5265 2.1713
.175 5.2676 1.3383 2.3663 2.7365

Batch jobs service rate ¥y = 0.25
Numher of Interactive terminals N = 5
Interactive job arrival rate Al = 0.1

Interactive jobs service rate My = 2.0

TABLE 1
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Mean number of jobs in the system at an arbitrary
time epoch when higher priority is given to

Number of
Interactive Interactive Jobs Batch Jobs
Terminals Batch Interactive Batch Interactive

5 0.2835 0.5875 0.2567 0.684)

6 0.2939 0.7327 0.2580 0.8552

7 0.3038 0.8895 0.2591 1.0407

8 0.3184 1.0598 0.2604 1.2422

Batch jobs arrival rate AO = 0.05

2 Batch jobs service rate u, = 0.25

Interactive jobs arrival rate Al = 0,1

Interactive jobs service rate u = 2.0

T g e

m.‘ l“x‘r’wl\

TABLE 2

T A S A L

4.  CONCLUSION

o e

W g R e R g

In this paper we have modelled the computer system with batch

i,

e

and interactive jobs as a single server queueing system with two :

classes of customers and non~preemptive priority service disci-

pline. The system performance measures were numerically evaluated

using an algorithmic approach proposed by Neuts [9] and a discrete

=
=
=i

=

state level crossing analysis (see [11]).
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APPENDIX

(a) Recursive Evaluation of Transition Probabilities

Define

P (n,r:k) = P{n batch jobs and r interactive jobs arrive during
a time interval which has probability distribution
B;(-) given there are k interactive jobs left in

the source at the beginning of this time intervall.

That is

=A.t

L o gt “At  -(k=r)A L
P, (n,r:k) = f 0 k *

BN R (r)(l-e 1 )e 1 dBi(t), i=0,1

A“(H At(z( =Mt =(k~r))
n! ‘r'o §=0 j

t
Dende " e Yas (t) 1)

21

) z (- 1)j';) Sl 0 dB, (t)
T j=0

n
- (0?2 & 1 DIOHP Gty
T 3=0

wvhere

’1‘!(“) () = 1in & 8 (s)

s+a ds
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and

Now

consider

%i(s) = OJ.“e-sx

dBi(x) , i=0,1 .

P, (a,riktl) = (-1)® =2 Y Ky © 1)3( %(“)(x0+(k+1+j-r)xl)

'Y ( r §=0

Using the substitution

ry _ ,r
(j)-(

we get, after some manipulation,

That

1 -
i+ (j_ll)

n
P, (a,riktl) = (-1)° n? (ktl)jz DIETHED Ograer- -2
- ° n? &y r DI T (et
' 3=0
= (CTH/GED R -1 - (Y7 e (n,r-1ike1)

is,

Pi(n,r:k+1) = (E%l)Pi(n,r-l:k) -

23
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n>0; r<k<M
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Note that

Pi(n,r:k+1) = 0 for all r>k+1

and |1

P, (n,0:k) = (-1D® =2 ¥ (3 ), w0

N N M e e s A s, U b o

it

Then using (A2), Pi(u,r:k) can be calculated in a recursive fashion.

That is, for r=l, calculate Pi(n,lzk), k=1,2,...,M, using (A2) and

then r=2, etc.

(b) Quantities Needed in the Analysis of the Imbedded Markov Chain
(taken from Lucantoni and Neuts [8]).

%
2
g
E
g
3

0

* -]
A() = 1 2zfA
b o

r=0

X(2) = &

r
zX
=1 T

G(2) = & ZArGr(Z) = ZA"(6(2))

r=0
a
G= I ArGr
r=0
§ aA=1 Te=1
£
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ﬁ 1s a square matrix with al

1 row vectors identical
to g.

™

o

i
U iy 4
" —— 0 L 2L 0 W Ty, DAL o
bl bAt R S W e A

A(g) is a diagonal matrix

of order M+l with diagonal
entl’ies Bo, Bl’ *s ey BMI

s

T VAT, S T

B = (1-GHE) [1-a+d-a @

H(z) = 2[I- T 2a cr"l(A)]'le
=1 ¥

TR R e

L(Z) = 2B + % 7B cr”l(zm(z)
v b o

3 r=1

h

7L

oo [--)
K(2) = 2a,(1-28 I 2B rc:r°]‘(2) + I ZArGr-l(Z)

0" 1 re1

gL(l)ag and xl,ﬁ=1

,ka(l) = 5 and l'{:,% =1

ﬁ* = Ll(l)g

SN AW A A A O vt
; Ll N S B s, O A A
O O 0 S A B DR AL D ;

=




* o« _ - © @ ~ @ _ f;:
Ro= (@A™ ™ e+ [2a-146" N1 (e-Da 8106+ 7Y, :
r=1 r=1 = r=1 =2 r :
* S I > > r-1 o n -1
§ =g+ IBG h +[ZB-%B6 1+ I (r-1)B&1(Z-6H)
r=17T =1 r=1 ¢ r=2 r &
* | -1, o S |
k g+ AO(I Bo) e+ {AO(I-BO) [rilBr—rﬁlsrc

- -] [+ [+ -] «©
+ I (r-1)ar8] + IA - % ArGr—l + I (z-1)A & (I—G+8)—lg
r=2 r=1 r=] r=2 r

_d"
az®

* *
A n(Z) = A (2)

i L s e et

5P =1, 1P =, 3P =g, 6D -l

Dy = qa-wmlp - 6D,

2

X(l)(l) xA;(l)(I-A+n)‘1 - (;(1)}l

b A A i B i S S
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for n>2

n : n-1
§®q) - E OBy ) - F gy @0 600
r=

=]

n
H(n)(1> = (I-A+n>'1r§1(:)[A:(l)-a‘r)(1)113(“'r>(1)

n-1 |
L Or Py g
r=
n n-1 n, (r) * (n-r) -1
Y@=z WA _ 1) -5 (1)I](1-A+m)
r=0

{5(1) (l),g = 2(—1_]_'-5{?;&) kflkBk,g + 2;50 kilBk;é(l) (1) + X0 kzzk(k-l)Bkg

-]

(
+ 2 kB
) 1 kX

Dy + %o kzlnkg(Z)(l) - 258 P )
- KAk P W + gnes @ (1 - xWp® ).
The evaluation G is carried out using the recursion (see page 6 of [8]).

o -1
G(0) = (I-Al) AO’

(1-8) 74 6" (k) , for ks
v=0
v¥l

G(k+1) =
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